# Intrinsically Stretchable pCO<sub>2</sub> Sensor Enabled by Multi-functional **Block Copolymer Matrices**

### <u>MinJae Kim<sup>1</sup></u>, Emmanouil Rousakis<sup>2</sup>, Victoria Lozano<sup>2</sup>, Conor Evans<sup>2\*</sup>

<sup>1</sup> Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea <sup>2</sup> Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States E-mail: mj3259@kaist.ac.kr, \*Corresponding: evans.conor@mgh.harvard.edu



- Wellman Cente

# Introduction

#### pCO<sub>2</sub> sensing by HPTS

 $CO_2(g) + H_2O(l) \rightarrow H_2CO_3(aq)$ 







Challenges



#### Intrinsically flexible and stretchable pCO<sub>2</sub> sensor





Fluorescence under 405 nm excitation (DH)

High Young's modulus ~ 1 GPa → Rigid sensor

Easily dried  $\rightarrow$  Loss of sensing capability

Fast photobleaching  $\rightarrow$  Signal changes over time

- Block copolymer with large chemical differences between blocks spontaneously undergoes microphase separation to minimize total energy and forms a nanostructure
- The multi-functional block copolymer matrices overcome the limitations of the previous PPMA-based and composite matrix

# Theoretical

#### Finite Element Analysis (FEM) for composite stretchable sensor

Fluorescence under

405 and 470 nm excitation

 $(D^{-})$ 



- FEM revealed that conventional stretchable PDMS HPTS@SiO<sub>2</sub> composite pCO<sub>2</sub> sensor undergoes severe stress concentration of over 600% compared to an intrinsically stretchable sensor
- The stress concentration would induce mitigation on mechanical stability, as well as gas permeability
- Effective stress mapping for PDMS – HPTS@SiO<sub>2</sub>
- Therefore, intrinsic stretchability is imperative

#### pCO<sub>2</sub>-dependent fluorescence signal

 $pCO_2$  change  $\rightarrow$  pH change  $\rightarrow$  Fluorescence change  $Q^+D^- \cdot xH_2O + CO_2(g) \rightleftharpoons Q^+HCO_3^- + HD \cdot (x-1)H_2O$  (Equilibrium constant:  $K = \frac{[HD]}{[D^-] \cdot pCO_2}$ )  $= \frac{contributions of HD and D^{-} to emission @470nm excitation}{contributions of HD and D^{-} to emission @405nm excitation} = \frac{\Gamma_{470}^{HD}[HD] + \Gamma_{470}^{D^{-}}[D^{-}]}{\Gamma_{405}^{HD}[HD] + \Gamma_{405}^{D^{-}}[D^{-}]}$  $I_{405}$  $pCO_2 = \frac{1}{K} \cdot \frac{[HD]}{[D^-]} = \frac{1}{K} \cdot \frac{\Gamma_{470}^D - R\Gamma_{405}^D}{R\Gamma_{405}^{HD} - \Gamma_{470}^{HD}} \simeq \frac{k'}{R} - k''$ (:  $\Gamma_{470}^{HD} \rightarrow 0$  experimentally)

## Results

PDMS-*b*-PAA matrix with TOA-TOAOH buffer system





# Experimental

#### Synthesis of ABA-type triblock copolymer (ABA-BCP)



# Conclusion

- By adopting a multifunctional matrix for the fluorescent molecule HPTS, we enabled the first intrinsically flexible and stretchable pCO<sub>2</sub> sensor
- The stretchable sensors showed excellent mechanical stability, reversibility, and sensing capability
- This work enables a novel modality for Point-of-Care for respiratory and metabolic diseases like hypercapnia

# Acknowledgements

This summer was like Komorebi because of all of you in Evans Lab and the program. First, my gratitude goes to my PI, Conor, who made this summer a truly dazzling experience for me. The two months of experience revigorated my passion for science. At every juncture in the lab, I was awed a lot by the ardor, expertise, and experiences that Manolis has, and learned so much from him. I am indebted so much to Victoria for not only her kind guidance but also the competence and techniques she taught me. You were the best advisor and mentors that I could have. Also, the discussions we had in the chemistry group left unforgettable lessons for me. I remember the happy times that all the other group members including Wonsang made for me. Last but not least, I am grateful to Andy and Fred for making this wonderful opportunity.

- Sensitivity within the physiological pCO<sub>2</sub> window (R<sub>air</sub>/R<sub>5% CO2</sub>) was greatly improved by 13.1 times to 27.5 from 2.1 of the PDMS-*b*-PAA matrix
- ABA-BCP further mitigated the photobleaching of HPTS, which resulted in extraordinarily stable photophysical properties over 10 min
- Sensors made of the ABA-BCP showed excellent reversibility over 5 times (> 90 min), during which R = I<sub>470</sub>/I<sub>405</sub> remained within ± 2.5% error
- Stretchable films retained their pCO<sub>2</sub> sensing capability after 100 times of stretching with 200% strain
- The sensors made out of ABA-BCP quantitatively showed excellent pCO<sub>2</sub> sensing capability in the physiological range under the mock extracorporeal membrane oxygenation (ECMO) system

