Optics and Photonics Congress 2024

Near-planar light outcoupling structure for ultra-efficient organic light-emitting diodes

MinJae Kim¹, Junho Kim², and Seunghyup Yoo^{2*}

¹Department of Materials Science and Engineering, KAIST

²School of Electrical Engineering, KAIST

E-mail: mj3259@kaist.ac.kr, *Corresponding: syoo_ee@kaist.ac.kr

Introduction

Loss channels in OLEDs

- Various strategies, including corrugation, low-index materials, and deliberate photonic design, have been applied to alleviate the SPP and waveguide modes.
- However, such strategies unload the dissipation intensity to substrate mode, thereby rendering effective substrate mode outcoupling methods imperative.

Current focus of light outcoupling strategies

Nat. Commun. 9.1 (2018): 3207.

ACS Photonics 2018, 5, 3315-3321

Adv. Funct. Mater. 2019, 29, 1808803

Despite vast attention devoted to light extraction efficiency and blurring, the thickness and rigidity of the outcoupling structure have been marginalized.

Fabrication

Potential optical diffraction artifacts

In the far-field diffraction regime (Fraunhoffer diffraction)

$$I_{out}(k_x, k_y) = |\mathcal{F}(I_{inc}(x, y) \cdot T(x, y))|^2$$

Mechanical performances

- Stress imparted to the brittle IZO layer was minimized by the Euler-Bernoulli bending theory.
- Through the deliberate mechanical design, we enable ultrathin, highly flexible, and ultra-efficient OLEDs.

Device performances

- High EQE (58%)
- Ultrathin form factor
- Flexibility ($R = 50 \mu m$)
- Near-Lambertian emission pattern
- Tolerance to viewing angledependent color change

Limitations

- On-pixel outcoupling structure is imperative for display applications
- Ultra-efficient low-angle emission is a crucial factor in the realization of high-luminance displays

Radial reduction

Inspired by the Fresnel lens, we propose radial reduction of the half-ball lens

On-pixel outcoupling enhancement

A near-planar light outcoupling structures for ultra-efficient organic light-emitting diodes available!

Conclusion

- Two factors heretofore underrated, thickness and aperture ratio, are taken into account for outcoupling enhancement in display applications.
 - Ultrathin and foldable outcoupling structure could be enabled with an inverted microlens array
 - On-pixel outcoupling enhancement could be realized with Ball-Fresnel lens
- Both low-angle emission and EQE were greatly enhanced by the use of Ball-Fresnel lens.

Thank you for your attention

MinJae Kim¹, Junho Kim², and Seunghyup Yoo²*

¹ Department of Materials Science and Engineering, KAIST

² School of Electrical Engineering, KAIST

Appendix: Symmetry inheritance theorem

Theorem. Provided an OLED with C_n symmetry, the optimal structure should also inherit the C_n symmetry Corollary. For a circular OLED, the optimal structure should have circular symmetry

Even with the postulate of $\eta_1>\eta_2$, it all boils down to $\eta_1=\eta_2$ (i.e. $\beta_0\to 0$)

Appendix: Symmetry inheritance theorem

Theorem. Provided an OLED with C_n symmetry, the optimal structure should also inherit the C_n symmetry **Proof.**

Appendix: Inverted microlens array

Appendix: Mechanical scrutinization

