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Preface

Science is all about proving your innocence. A hypothesis be-
comes a theory only if all the other sound alternate hypotheses are
rationally rejected with sufficient evidence. A well-founded the-
ory shall explain related observations in a reasonable manner and
lucidly predict the results of an inchoate idea and to-be-performed
experiments.
This book is the finishing-up of my studies, methodologies, the-
oretical backgrounds, and experiences in the field of crystalline
light-emitting materials and devices. Leading through the follow-
ing chapters, you will encounter a plethora of related disciplines,
spanning from classical thermodynamics, through light-matter in-
teractions, to basic semiconductor electronics. Albeit it cannot
cover the whole physical background of optoelectronics study, be-
cause the discipline is like an assorted gift set, I sincerely hope this
book helps you compose a versatile toolkit and ‘prove your inno-
cence’ in your future studies.
This would not have been possible without my advisors. First and
foremost, my gratitude goes to Prof. Himchan Cho who allowed
me to have wonderful times and make invaluable networks in the
lab. His munificent support enabled my steadfast challenges and
taught me to seek veritas. It was a true fortune for me to have him
as my advisor. I could get indispensable knowledge and insights
from the teachings of Prof. Seunghyup Yoo. I was awed a lot by
the dazzling intellectual sparkles of him. He and his lecture per se
are pellucid evidence showing that merely ‘reading books’ is not
sufficient and one must go to the classroom to truly understand and
acquire. I truly enjoyed the intellectual enlightenment triggered by
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Prof. Yoo. Last but not least, some parts of this book are indebted
to the teachings of Prof. Mooseok Jang.
Despite the teachings of the renowned and admirable mentors, this
manuscript may contain some errors or misleadings solely owing
to the inadequacy of my learning and experience. If you have any
ideas or opinions, please contact me via my homepage or email.

Dec. 2023

MinJae Kim
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CHAPTER 1
Basic understanding of the crystallization

of multi-component system

Before directly delving into an optoelectronic analysis of light-
emitting materials, you should get acquainted with how layers of
an optoelectronic device are fabricated. In this chapter, you will
learn novice physics related to spin-coating, nucleation, and growth
of polymer and polycrystalline thin films. This chapter is writ-
ten assuming you are given basic knowledge of Newtonian fluid
dynamics and rudimentary thermodynamics. (An undergraduate-
level understanding of thermodynamics would be sufficient) This
chapter will be the founding basis of the later discussions and
therefore you should focus on thoroughly understanding the de-
tails of this chapter.
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Fig. 1.1. Spin-coating system

1.1. Spin-coating process

In tandem with its facile bandgap modulation by halide alloying,
solution processability is another major advantage of perovskite
optoelectronics. Not only perovskite layer but also polymer layers
for effective charge (typically hole injection in the case of bottom-
emission devices) are fabricated by the spin-coating method as
such. Therefore, you may have to understand the underlying physics
of the classical spin-coating process.
Considering the nature of the process, it should be apparent to
opt for the cylindrical coordinate system. Say the solution is not
diffusion-limited so that concentration function C(r, z, t) is in-
dependent of z and the solvent evaporation rate remains constant
throughout the whole process. (for the mixed solvent system, see
section 1.4.2) Also, provided the total volume of the solution is the
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mere sum of that of solute (S) and solvent (L), such that C(r, t) =
S
h = S

S+L . Then, for the radial flow of a Newtonian fluid q, kine-
matic viscosity ν , and constant evaporation rate e,

d
dt

S =−C
r

∂

∂ r
(rq) =−C

2ω2h3

3ν

d
dt

L =−(1−C)
2ω2h3

3ν
− e

(1.1)

The critical film thickness h0, at which the thinning mechanism
is converted from the centrifugal flow to the evaporation of the
solvent, is given by, from equation 1.1,

h0 =

(
3νe

2(1−C)ω2

)1/3

If the airflow above the spin-coating substrate remains laminar
flow, the final thickness is given by

h f =

(
3KνC3

0
2(1−C0)

)
1

ω1/2

The relationships derived from equation 1.1 is called the Meyer-
hofer model. Yet the proportionality factor may differ, many ex-
perimental results revealed the validity of ω−1/2-dependence of
the film thickness. Unless any other interruption (e.g. antisolvent
dripping), the thickness tends to follow the rule. For example,
PEDOT:PSS dispersion solution is well known to follow the rela-
tionship.
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1.2. La Mer theory

Given the rudimentary understanding of spin-coating physics, we
next delve into the La Mer theory. The theory, in a few words, is
the bridge for the gap between the initial input and kinetics. Start-
ing from thermodynamics, you will learn how the kinetics are re-
lated to the initial conditions of a system. Throughout this section,
you should keep that the theory is based on chemical equilibrium,
which may not be true in real-life processes in mind.

1.2.1 Classical nucleation theory

Consider a particle solidification from a single-component solu-
tion. Assume that the solution shows an ideal behavior and the
particle is a pure single-component solid. Then, the chemical po-
tential of the solute in liquid and solid phase are given by the fol-
lowing equations, respectively.

µM,l = µ
◦
M,l + kT lnaM,l = µ

◦
M,l + kT lnXM,l

µM,s = µ
◦
M,s

At equilibrium, µM,l = µM,s so that the following holds.

µ
◦
M,l −µ

◦
M,s =−kT lnXeq

M,l

4



Then the Gibbs free energy change of the phase transformation
accordingly would be:

∆Gv = µM,s −µM,l

= µ
◦
M,s − (µ◦

M,l + kT lnXM,l)

=−kT ln

(
XM,l

Xeq
M,l

)

≡−kT ln
(

C
C0

)
For the absolute supersaturation α ≡ C−C0

C0
and molar volume Ω,

molar phase transformation energy would be:

∆µv =−kT
Ω

ln(1+α) (1.2)

The total free energy is contributed by (1) phase transformation
(∆µv) and (2) interface formation (∆µs). Therefore, the total change
of chemical potential owing to the formation of a spherical nucleus
is given by:

∆G = ∆µv +∆µs =
4
3

πr3
∆Gv +4πr2

γ (1.3)

Because µv < 0 and µs > 0 for α > 0, the ∆G(r) has the global
maxima at a certain finite radius rc (critical radius) such that d

dr ∆G(r)|r<rc >

0 and d
dr ∆G(r)|r>rc < 0. Mathematically, d

dr G(r)|r=rc = 0 and con-
sequently,

rc =− 2γ

∆Gv

∆Gc =
16πγ3

3(∆Gv)2

(1.4)
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For heterogeneous nucleation, in which a nucleus is formed at the
interface between the liquid and existing substrate, the rc and ∆Gc

are scaled by a geometric factor S(θ), where θ is the contact an-
gle between the solid and the substrate. For spherical geometry,
S(θ) = 1

4(2+cosθ)(1−cosθ)2 ≤ 1. Therefore, the critical radius
(the minimal radius of a nucleus not to dissolve spontaneously) is
smaller for the heterogeneous nucleation compared to the homo-
geneous one.

1.2.2 La Mer diagram

Fig. 1.2. La Mer diagram

La Mer diagram is a visualization
of solute concentration as a function
of time in the classical nucleation-
growth process. In figure 1.2, Cs is
the equilibrium concentration of the
solute (= C0), and Cmin is the su-
persaturated concentration required
to overcome the critical Gibbs free
energy barrier for nucleation, ∆Gc.
According to the La Mer theory,
a nanoparticle synthesis process is
comprised of the following three
regimes.

1. Rapid increase in the concentration of free monomer in so-
lution

2. Burst nucleation and a significant decrease in free monomer
concentration

3. Growth of nanoparticles under the control of diffusion
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The three regimes are respectively indicated in figure 1.2 with I, II,
and III. The first step is typically done by antisolvent dripping in
the case of quasi-2D perovskite synthesis. As also can be deduced
intuitively, the higher the monomer concentration the initial solu-
tion has, the smaller nanoparticles with narrower size distribution
are formed. Yet it is still controversial if the La Mer theory can
duly describe multi-component crystallization, it is apparent that
it cannot directly describe the final size distribution.

1.3. Wiemarn’s theory

With the given advantages and drawbacks of the La Mer diagram
in mind, Wiemarn’s theory could be an excellent alternative to the
La Mer theory. Especially, it is imperative to describe an ensem-
ble of anisotropic nanomaterials, which cannot be described with
the La Mer theory in a simple manner. Wiemarn’s theory is about
thermodynamics and consequently describes the final product as a
state function of initial conditions. Contrary, the La Mer theory has
something to do with kinetics and accordingly bears path function
nature. The input of Wiemarn’s theory is the supersaturation of so-
lute, σ(T ), and the output is crystallite size. The theory describes
the following two things:

• How supersaturation σ(T ) is related to process rates.

• How crystallite size depends on each process rate.

To this end, the theory aims to reveal the connection between su-
persaturation σ(T ) and crystallite size S(σ). In general, nucle-
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ation rate V1(σ) and growth rate V2(σ) are given as follows:

V1(σ) = A1 exp
(
− 1

σ2

)
V2(σ) = A2σ

2 tanh
(

B
σ

)
As intuitively deduced from the equations above, both V1 and V2
are monotonic increasing functions of σ . Moreover, increasing
rate d

dσ
Vj(σ) goes larger for a concentrated solution.

Fig. 1.3. Wiemarn’s theory

Figure 1.3 illustrates typical rates of growth and nucleation behav-
ior anticipated by Wiemarn’s theory. As one can easily anticipate,
the crystallite size would be proportional to V2/V1. At a low-σ
regime, in which the growth rate exceeds the nucleation rate (i.e.
V2(σ) > V1(σ)), crystallite size remains large and relatively un-
changed. At a high-σ regime, contrastingly, crystallite size re-
mains small because nucleation outperforms growth kinetics.
The true value of this theory is its versatility. It is widely known
that the description is valid for multi-component systems and more-
over, for a plethora of form factors spanning from quantum dot
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synthesis to polycrystalline thin film. Quasi-2D perovskite thin
film fabrication, for example, could be simply represented by a
σ − t graph of figure 1.3. During a spin-coating process, super-
saturation naturally grows owing to the gradual evaporation of the
solvent. At the juncture of antisolvent drips onto the film, it would
jump σ abruptly because it contributes to solubility negatively, re-
moves residual solvents, and evaporates volatile. Therefore, high
supersaturation is imperative to yield quasi-2D perovskite film with
small ⟨n⟩.

1.4. Crystallization theory of quasi-2D perovskite at a glance

With the proven track of the versatility of the model, combined
with reproduced experimental results, the S3 model is proposed
here.
Initially, the lead bromide polyhedral component, A-site ion, and
spacer molecule are solvated by solvent molecule, DMSO in fig-
ure 1.4. Upon antisolvent dripping, partial removal of the solvent
molecule results in desolvation and consequently, it proceeds to
nucleus formation or takes an excursion to form other phases, 1D
perovskite for example. Presumably, the demarcation concentra-
tion of the intermediate for the formation of a nucleus is higher
than that for the excursion. As long as the nucleus is formed, it un-
dergoes subsequent growth, the rate of which is mainly determined
by Wiemarn’s theory.
The below two insets of figure 1.4 are the photoluminescence and
absorption spectra respectively for the film fabricated by two pre-
cursor solutions, with one concentration being double the other. As
expected by Wiemarn’s theory, higher solute concentration results
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Fig. 1.4. S3 model

in low ⟨n⟩ and blueshifted optical properties, consequently. More-
over, raising the supersaturation level also results in suppressed
excursion. Here, one should note that, depending on the chemical
nature of the spacer molecule, one may omit pathway 2.

1.4.1 Solute concentration effect

The experimental results shown in figure 1.4 not only validate the
S3 model but also denote one shall not opt to simply concentrate
the precursor solution just to thicken the film. Contrary to typical
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organic polymer films, the thickness of which is directly propor-
tional to solution concentration with all the other factors are iden-
tical, perovskite films with rich precursor solution have different
thicknesses, phase distributions (hence emission wavelength), and
even compositions. What is more, the thickness does not have a
linear relationship with the concentration owing to viscosity and
antisolvent dripping-dependent fluid dynamics. Therefore, one
should refrain from being seduced by ‘intuition to thicken the so-
lution.’

1.4.2 Antisolvent doping

Figure 1.4 likewise signifies that solution and antisolvent composi-
tion also play a critical role in polycrystalline perovskite thin film
fabrication. For example, one can ‘dope’ a small amount of an-
tisolvent to precursor solution to boost its supersaturation α . As
shown in figure 1.5, photoluminescence peak wavelength under-
went blueshift with an ascending amount of antisolvent added.
Surprisingly, antisolvent dripping time-dependence of photolumi-
nescence peak shift showed an opposite propensity between doped
and undoped systems. Contrary to the former case, in which de-
layed antisolvent dripping resulted in bathochromic change, the
latter case showed a clear blueshift.
The results from the undoped solvent system are straightforward.
As expected from Wiemarn’s theory, (see Section 1.3) temporal
evaporation of solvent would lead the solution to have a higher
starting point prior to antisolvent dripping and hence resulted in
higher α throughout the crystallization process, which ultimately
renders grains smaller. The striking point here is the redshift in
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the antisolvent-doped case. It implies that there exists a temporal
regime in which ∂

∂ t σ < 0. With this observation, you may clearly
envisage the abstract shape of σ(t) as shown in figure 1.5.

Fig. 1.5. Antisolvent doping effect

The presumed σ(t) is also consistent with the results anticipated
by the simple model. For the system in a non-equilibrium state,
evaporation rates can be utilized to describe the composition of
the solvent. For the sake of succinct description, the initial total
volume of the system is set to be 1. To formalize in a general man-
ner, define the initial composition, evaporation rate, and solubility
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of the solute as χi, ηi, and βi, respectively. Also, set the initial
solute dissolved in the multinary solvent system as α . Then, one
can write the total volume as a function of time as follows:

V (t) = ∑
i

χi(1−ηit)

= 1− t ∑
i

χiηi

Consequently, the concentration of the solute as a function can be
described as (note that ∑ χi = 1 by definition)

C(t) =
ζ

1− t ∑i χiηi

Then, for time t, the solubility of the solute can be described as:

Ceq(t) =
∑i χiβi(1−ηit)

1− t ∑i χiηi

Hence, the supersaturation as a function of time is written as:

σ(t) =
C

Ceq

=
ζ

∑i χiβi(1−ηit)

(1.5)

A cerebral person may easily get equation 1.5 is consistent with
the graphs in figure 1.5, which is intuitively derived from the ex-
perimental results.
The antisolvent doping reverses the trend of time-dependent super-
saturation level change. In the undoped case, ∂σ/∂ t remains to be
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positive throughout the process. Contrastingly, when it comes to
an antisolvent-doped system, ∂σ/∂ t becomes negative in the ini-
tial stage. Therefore, in that particular regime, the propensity of
antisolvent dripping time-dependent physical behaviors would be
reversed. As a prominent example, the morphology (hence leak-
age current in the electroluminescence devices) could be enhanced
even in preceding antisolvent dripping, while a smooth surface
could be achieved only by delayed antisolvent dripping, which ag-
gravates the photoluminescence quantum yield of a quasi-2D per-
ovskite film, in the undoped system. This technique was devised
and coined as the ’antisolvent addition reverses critical trade-offs
by inversion of the curve’ (AntARCTIC) method by the author.
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CHAPTER 2
Quantum mechanical description of

optical processes

Optoelectronics is all about light-matter interaction. Light, an elec-
tromagnetic wave, is the product of the momentum change of a
charged actor. In this section, however, the light is treated as the
product of dipole moment change keeping the optoelectronic ap-
plications in mind. Some parts of this chapter are described in a
quasi-classical manner to further enhance the intuitive understand-
ing of basic optoelectronic processes. If you are not familiar with
some important concepts in solid-state physics including Bloch
theorem, Fermi-Dirac and Maxwell-Boltzmann statistics, Hilbert
space, and related disciplines, you may have to recall your basic
understandings. Through studying this chapter, you can get a basic
yet versatile toolkit to understand the later part of this book.
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2.1. Exciton

2.1.1 Effective mass model

‘An electron and a hole weakly bound with Coulomb force’. This
is a very well-known, typical, and tedious explanation of an ex-
citon. Under such an explanation, an exciton is modeled by the
hydrogen atom model. Consequently, the potential function would
be given by Coulomb potential so that

V (r) =− 1
4πε0

e2

r

Then the total eigenvalue equation would be(
− h̄2

2m
∇

2 +V
)

ψ = Eψ

It is rather simple but tedious to solve the differential equation, so
here we directly dive into the results. (Nevertheless, try to solve
the equation in the spherical coordinate system to reminisce your
undergraduate studies.) The eigenvalue of the equation is given by

En =− µe4

32π2ε2h̄2
1
n2

Because it is the ‘binding energy’ of an exciton, the total energy of
an exciton is given by

E ′
n = Eg +En (2.1)

The energy eigenvalue En reduces the effective gap and defines the
‘optical bandgap.’ (E ′

n)
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2.1.2 Bloch description

Understanding the band structure for an exciton is the foremost pri-
ority in studying optoelectronic devices. Yet we have dealt with the
effective mass model, (section 2.1.1) it was based on the ‘spheri-
cally symmetric potential field’ assumption, which is not true in
real cases. To cope with the potential error, consider a ring crystal
with N atoms (spaced by a) with the ground state articulated by u j.
Then, the ground state of the whole system is described as

ψg =
N

∏
i=1

ui

If the jth atom is promoted to the excited state, v j, the total wave-
function will become

ψu, j =

(
j−1

∏
i=1

ui

)
v j

(
N

∏
i= j+1

ui

)

Then the total eigenvalue equation is given by

H ψu, j = εψu, j +T (ψu, j−1 +ψu, j+1)

where T indicates the interaction between the adjacent excited
states. It is apparent that the above equation would have the Bloch-
wavefunction such that

ψu,k = ∑
j

exp(i jka)ψg

17



As such, the eigenvalue corresponding to the Bloch-type eigen-
function would be

H ψu,k = ∑
j

exp(i jka)H ψg

= ∑
j
(ε +T (exp(ika)+ exp(ika)))exp(i jka)ψg

= (ε +2T cos(ka))ψu,k

Ek = ε +2T cos(ka)

(2.2)

Consequently, a Frenkel exciton has a band structure represented
by the cosine-type oscillation of energy with respect to k⃗.

2.1.3 Saha-Langmuir equation

With the given rudimentary understanding of an exciton, its sepa-
ration into free carriers can be described using ionization theory.
Especially, the Saha-Langmuir theory, originally has been being
used in astrophysics, is adopted to model the separation of an ex-
citon in a dynamic equilibrium. If exciton-exciton interaction is
negligible (i.g. no wavefunction overlap), and given total excited
state N in equilibrium, for the number of free electron-hole pairs
and excitons of neh and eexc, respectively,

N = neh(T )+nexc(T )

Then the relative balance between free carriers and excitons is
given by thermal equilibrium such that

n2
eh

nexc
=

µkT
32πε2h̄2 exp

(
−

E ′
b

kT

)
18



where E ′
b is the renormalized exciton binding energy. Consequently,

the fraction of free charge carrier x is given by

x2

1− x
=

1
n

(
32πµkT

h̄2

)3/2

exp
(
−Eb

kT

)
(2.3)

where n is the excitation density.

2.2. The density of states in 2D quantum well

Consider a 2D quantum well. Regardless of the semi-infinitely
long well height, whether it is infinite or definite, the allowed en-
ergy state is quantized in the normal direction. For the infinite
quantum well with its width of L, the quantized wave vector is re-
stricted to have its wavevector of integer multiples of π/L. There-
fore, in k-space, the density of states is given by

g(k⊥) =
(

1
2π

)2

To make it physically meaningful and versatile, it is required to be
transformed from the k-space representation to the E-space. Con-
sidering the symmetry of the potential well, the infinitesimal areal
part in k-space is given by d2k⊥ = d(πk2

⊥) = 2πk⊥dk⊥. Then, by
the rudimentary calculus,

g(E)dE = g(k⊥)d2k⊥

and consequently,

g(E) =
k⊥
π

d
dE

k⊥ (2.4)
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Because the total energy is given by (recall 2D particle-in-the-box
problem!)

E j =
h̄2

2m
k2
⊥+

h̄2

2m

(
jπ
L

)2

Therefore, equation 2.4 becomes

g(E) =
m

π h̄2

Generally, = ∑
j

m
π h̄2H(E −E j)

(2.5)

where H(x) is the Heaviside step function. As such, contrary to
the 3D case, the density of states is incontinuous. However, this
‘perfect’ 2D model cannot thoroughly explain the absorption re-
sults of so-called ‘2D’ materials, because they do have thickness.
In reality, the density of states of such 2D or quasi-2D materials
exhibits something between 3D and perfect 2D.

2.2.1 Quantum-confined Stark effect

We have treated symmetric quantum wells in obtaining eigenfunc-
tions and corresponding eigenvalues. Under an electric field, the
well would be skewed and electrons and holes would be pushed to
the opposite part of the well. (This is called ‘field-induced ioniza-
tion of an exciton’) (see figure 2.1) In the case of a quantum well,
however, the ionization is drastically limited by the potential bar-
riers of the well, and hence the exciton is not separated into free
carriers. Therefore, a quantum well structure retains its excitonic
emission vertexes even under a strong field. (see section 3.5)
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Fig. 2.1. Quantum-confined Stark effect

In tandem with the high-field survival of the exciton state, the field
also broadens the potential well. This results in a discriminative
redshift in both absorption and emission. In other words, every
electroluminescence is bathochromic compared to its photolumi-
nescence. The redshift could be observed in electroluminescent
devices with quantum-confined nanomaterials, including quantum
dots, nanorods, and nanoplatelets, as the active material.

2.2.2 Forbidden transitions allowed

The collapse of potential symmetry by external fields also ruptures
the transition selection rule dictated by Fermi’s Golden Rule (see
section 2.3). Provided no external field, transitions with ∆ j ̸= 0
are forbidden because the overlap integral goes to zero. However,
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under the exertion of an external field, wavefunctions of electron
and hole are no longer symmetrical, and the asymmetry unleashes
the feasibility of the forbidden transition.

2.3. Fermi’s golden rule

Then, how could the light-matter interaction be understood? From
the viewpoint of matter, light is the external stimulus. Thus, it be-
comes apparent to deal with the interaction with the perturbation
theory. Especially, because light is the temporal field function, the
time-dependent perturbation theory is used. Even though the fol-
lowing sections deal with merely sinusoidal perturbation potential,
it can be further expanded to an arbitrarily oscillating field with
Fourier transformation.

2.3.1 Time-dependent perturbation theory

A general solution of the time-dependent Schrodinger equation
ih̄ ∂

∂ t ψ (⃗r, t) = H0ψ (⃗r, t) is given by ψ (⃗r, t) = φn(⃗r)exp
(
−i Ent

h̄

)
where En and φn is respectively the eigenvalue and the eigenfunc-
tion of the corresponding time-independent Schrodinger equation.
Then, the general solution of the time-dependent Schrodinger Equa-
tion is given by

ψ (⃗r, t) =
∞

∑
n=1

an(t)φn(⃗r)exp
(
−i

Ent
h̄

)
where an(t) is the weighting factor of the nth phase. Now, con-
sider the perturbated potential of V (t) so that H0 → H0 +λV (t)

22



and consequently ih̄ ∂

∂ t ψ (⃗r, t) = (H0 + λV (t))ψ (⃗r, t). With the
modified Hamiltonian,

ih̄
d
dt

am(t) =
∞

∑
n=0

an(t)exp
(
−i

(En −Em)t
h̄

)
⟨φm|λV |φn⟩

Here, elucidating an(t) is the key to solving the Schrodinger equa-
tion (i.e. finding the ψ (⃗r, t)) As an(t) can be expanded as a func-
tion of λ so that

an(t) =
∞

∑
j=0

λ
ja( j)

n (t)

If the approximation is delimited to the first order,

ih̄
d
dt

a(1)n =
∞

∑
m=0

a(0)m ⟨φm|V |φn⟩exp(iωnt)

Because a(0)n (t) = 0,

an(t)≈− i
h̄

∫ t

0
⟨φi|V |φn⟩exp(iωnit)dt (2.6)

2.3.2 Optical dipole transition and the Fermi Golden Rule

Define the position vector of the positive and the negative charges
as r⃗+ and r⃗−, respectively. Then, the dipole moment is defined by
d⃗ = e(r⃗+− r⃗−) = e⃗r. Then the electric potential of an oscillating
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electric field is given by

V =−d⃗ · E⃗
=−e⃗r · (E(t)êr)

= e⃗r · E⃗0 cos(ωt)

=
e⃗r · E⃗0

2
(exp(iωt)+ exp(−iωt))

≡V0 (exp(iωt)+ exp(−iωt))

(2.7)

Consequently, by equation 2.7,

⟨φm|V |φn⟩= ⟨φm| e⃗r · E⃗0 |φn⟩cos(ωt)

= 2(V0)mn cos(ωt)

Then, by equation 2.6,

an(t; t ≥ t0) =−2i
h̄
(V0)nm exp

(
i
(ωnm −ω)

2
t0

) sin
(
(ωnm−ω)t0

2

)
ωnm −ω

Therefore, the transition rate is

Ri→ j ∝ |am(t ≥ t0)|2

=
2π

h̄2 |⟨ j|V |i⟩|2 g(E j)
(2.8)

where g(E) is the density of states. Physically, the Fermi Golden
Rule states that an ‘optical transition rate is proportional to the
wavefunction integral between the two states with the electrical
potential.’

24



Consider a polarization plate for example. Provided the metal en-
graving is aligned in the y-direction (i.e. transmission axis parallel
to the x-axis), the dipole vector d⃗ is restricted to have direction only
parallel to the y-axis. Then, for the x-oscillating field would render
the electric perturbation potential to be 0 and hence the transition
rate Ri→ j. In other words, the plate does not optically militate
any effect on the x-polarized light. Contrastingly, in the case of y-
polarized light, the potential would be maximized so that the light
would be effectively absorbed by the metal engravings. Accord-
ingly, the plate filters the x-polarized light.
Similarly, one can simply investigate the slab orientation distribu-
tion by using polarized light. In the case of quasi-2D perovskite,
for example, the dipole vector is restricted within the 2D plane de-
fined by the slab. Consequently, the light with its electric field os-
cillating in the vertical direction of the slab would not interact with
the slab. Considering that only a cosine fraction of incident light
would be absorbed by the slab and that each slab with different
atomic thickness (i.e. different n) absorbs light with its character-
istic absorption peak, one can obtain ⟨θ , φ⟩(n) of the sample in a
rather simple way.
As such, the Fermi Golden Rule, as its name states, is the initiating
point of the light-matter interaction.

2.4. Jablonski Diagram

Heretofore, you have learned how light interacts with matter. The
next step is to investigate what transitions are viable and their
mechanism. This section provides a bird-eye view of optical tran-
sitions in real-world applications.
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2.4.1 Exchange operator and the Pauli exclusion principle

Are two arbitrary electrons distinguishable? One can answer this
question by shedding light on their exchange. Consider the wave-
function ψ(1, 2) that describes two particles 1 and 2, and the ex-
change operator C that exchanges the two particles. Then, appar-
ently, C is a Hermitian operator because

⟨ f |C |g⟩=
∫∫

f ∗(r1, r2)Cg(r1, r2)dr1dr2

=
∫∫

f ∗(r1, r2)g(r2, r1)dr1dr2

=

(∫∫
f (r1, r2)g∗(r2, r1)dr1dr2

)∗

(by variable exchange) =
(∫∫

g∗(r1, r2) f (r2, r1)dr1dr2

)∗

=

(∫∫
g∗(r1, r2)C f (r1, r2)dr1dr2

)∗

= ⟨g|C | f ⟩∗

Since it is a Hermitian operator, it constitutes an eigenvalue equa-
tion of

Cψ(1, 2) = ψ(2, 1)

=Cψ(1, 2)

Therefore

C2
ψ(1, 2) =C2

ψ(1, 2)

= ψ(1, 2)
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Consequently, the eigenvalues are ±1. The symmetry of the wave-
function with respect to the exchange operator dictates the proper-
ties of the particle. Indeed, bosons have C = +1 (symmetric) and
fermions have C = −1 (antisymmetric). This is articulated by the
famous Pauli’s exclusion principle.

Pauli’s Exclusion Principle. The total wavefunction
of a system comprised of identical fermions is anti-
symmetric with respect to the exchange operator.

Say that the system with the two identical particles respectively at
different states is described by

Ψ(1, 2) = c1ψa(1)ψb(2)+ c2ψa(2)ψb(1)

Then, the eigenvalue of the fermion system with respect to the
exchange operator has the following relationship with the coeffi-
cients.

c1 =−c2 =
1√
2

2.4.2 Singlet and triplet

Now, take a spin into account. Then the total wavefunction of a
system could be described with the multiplication of spatial wave-
function and spin wavefunction. In this case,

Ψ(1, 2) = (c1φa(1)φb(2)+ c2φa(2)φb(1))s(1, 2)

= Φ(1, 2)s(1, 2)
(2.9)

Two make the whole wavefunction antisymmetric, (recall section
2.4.1) two following cases are feasible.
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Fig. 2.2. Allowed spin states

Symmetric Φ(1, 2) and antisymmetric s(1, 2)

In this case, it is apparent that c1 = c2 = 1/
√

2. Then, accordingly,
the spin wavefunction is restricted to have only

s(1, 2) =
1√
2
(|↑↓⟩− |↓↑⟩)

Because it has only one feasible spin state function, this state is
called the singlet state.

Antisymmetric Φ(1, 2) and symmetric s(1, 2)

In this case, s(1, 2) would have three options.

s(1, 2) =


|↑↑⟩ (ms =+1)

1√
2
(|↑↓⟩+ |↓↑⟩) (ms = 0)

|↓↓⟩ (ms =−1)

Similarly to the opposite case, c1 = −c2 = 1/
√

2. Because it has
three available spin state functions, it is called the triplet state. It
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Fig. 2.3. Jablonski diagram

is noteworthy that the spatial part of the system wavefunction be-
comes zero if the two fermions are in the same state. Therefore,
such a state is prohibited. In the case of electrons, the discussions
above are summarized in figure 2.2.

2.4.3 Spin-orbit coupling, forbidden transition, and Jablon-
ski diagram

Recall the Fermi’s golden rule. (see section 2.3) Basically, it has
nothing to do with spin restriction. In other words, the spin state
function remains intact throughout the optical processes. There-
fore, because only the singlet state is allowed in the ground state,
only singlet-to-singlet transition is allowed according to Fermi’s
golden rule. The light emission that corresponds to the transition
is called fluorescence.
Contrastively, the triplet-singlet transition is forbidden according
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to Fermi’s golden rule because it entails spin flipping. In reality,
however, spin could be flipped. Recall that Fermi’s golden rule is
based on the first-order perturbation theory. Therefore, in the sys-
tem where higher-order perturbation becomes notable, spin invari-
ance may not be held. For example, a strong magnetic field enables
spin flipping during optical transitions and under ambiance.
Not only the external field but also the atomic nucleus itself exerts
a magnetic field on an electron. Envisage an electron revolving
around the nucleus. From the electron’s viewpoint, the nucleus re-
volves it around. The rotating charged actor itself constitutes cur-
rent and the current generates a magnetic field around it. Because
the magnetic flux density is proportional to the current, the higher
the nuclear number the system has, the stronger the electric field
the electron would sense. Therefore, in a typical inorganic semi-
conductor, the feasibility of spin-flipping becomes vivid. In that
case, the triplet-to-singlet transition becomes salient and is called
phosphorescence. Jablonski diagram depicts the optical states and
relevant transitions. (see figure 2.3)
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CHAPTER 3
Absorption spectra analysis

Kudos! You have got the basic toolkits for the optoelectronic anal-
ysis. From now on, you will dive into how information extracted
from optical and electrical surveys could be utilized to get a deeper
understanding of your materials or devices. Optical analysis is an
extremely facile modality to get rich information from the sam-
ple. We will begin our journey by scrutinizing how the absorption
spectrum could be the fountain of insight.
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3.1. Rudimentary optics

3.1.1 Optical Admittance

Recall the Maxwell equations.

∇ ·E =
ρ

ε

∇×E =−µ
∂

∂ t
H

∇ ·H = 0

∇×H = J+ ε
∂

∂ t
E

(3.1)

Then, the optical admittance is defined by the amplitude ratio be-
tween the magnetic field and the electric field.

Y ≡ |H|
|E|

3.1.2 Fresnel Loss

At every single juncture in the light propagation, the continuity
theorem should be satisfied. As such, at every interface, the elec-
tric field and magnetic field have to be preserved. By that, the Fres-
nel transmission and reflection coefficients are respectively defined
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by

t =
Et

Ei
=

2Y e f f
1

Y e f f
1 +Y e f f

2

r =
Er

Ei
=

Y e f f
1 −Y e f f

2

Y e f f
1 +Y e f f

2

where
Y e f f

j

Y0
=


n j (normal incidence)
n j cosθi (s-polarization)
n j/cosθi (p-polarization)

(3.2)

Note that the coefficients must be distinguished from reflectance
and transmittance. (they are defined as the ratio of intensities.)
Also, from the above equation, it can be easily deduced that all
the reflections at the interface with absorptive materials ultimately
retards the phase.

3.1.3 Optical resonator effect

A multi-layer film constitutes Fabry-Perot resonators. For the sake
of simplicity, here we stick to a single-layer resonator. For the
angle θ within the layer of thickness d and refractive index n, the
output intensity is proportional to

fFP(λ ) =
T1 +T2

(1−
√

R1R2)2 +4
√

R1R2 sin
(

φ1+φ2
2 + 2πnd cosθ

λ

)
(3.3)

Consequently, the output would be maximized if the optical length
of the layer makes the sine term in the denominator negative. As
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Fig. 3.1. Tauc plot

such, the resonator effect could be maximized and so is the output
intensity.

3.2. Tauc plot and optical bandgap

The foremost information that could be extracted from an absorp-
tion spectrum is the bandgap of the material. From classical semi-
conductor physics, provided the density of states of the two bands
remain parabolic, (i.e. conduction band and valence band have the
density of state proportional to

√
∆E near their tail) for the refrac-

tive index n(E) and optical absorption α(E), it is widely known
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that,
Eα(E)n(E) ∝ (E −Eog)

2 (3.4)

Equation 3.4 is often called the Tauc expression. However, in real
crystal, the density of states may not follow the exact parabolic
dependence. In the case of quartic dependence, the famous Davis-
Mott expression is obtained.

Eα(E)n(E) ∝ (E −Eog)
3 (3.5)

For example, low-pressure CVD-deposited a-Si is well known to
follow the quartic dependence and therefore is soundly fitted by the
Davis-Mott expression. In general, for arbitrary crystalline mate-
rials, Eα(E)n(E) ∝ (E −Eog)

n where n depends on the electronic
structure of the material.
The relationship can be expressed in a linear form by taking loga-
rithms to both sides. The plot is called the Tauc plot and is used to
obtain the optical bandgap Eog. It is determined by the position at
the cross point of the two extrapolation lines corresponding to the
baseline and Urbach tail. (see figure 3.1)

3.3. Scattering effect

Typical thin film inherently bears optical scattering. Microscopi-
cally, it is the process of inducing a dipole oscillation within the
material. Because all the atoms are thermally excited at room tem-
perature, the spatial scattering profile is dictated by a random pro-
cess with a given probabilistic density function.
Scattering efficiency Q is defined as the ratio of scattering cross-
section to physical cross-section. For a spherical scatterer with its
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radius r and refractive index n, the scattering efficiency is defined
by the size of the scatterer relative to wavelength λ .
For large scatterer limit, where λ ≪ r,

Q = 2

For the Mie scattering regime, where λ ≈ r,

Q = 2− 4
ρ

sinρ +
4

ρ2 (1− cosρ)

where ρ ≡ 2π

λ
(2r(n−1))

For the Rayleigh scattering regime, where λ ≫ r,

Q =
128π4

3

(
n2 −1
n2 +2

)2( r
λ

)4

One may wonder why the scattering efficiencies all exceed 1. But
it would become apparent if you recall both geometric cross-section
and diffraction contribute to the optical scattering cross-section.
For example, in the large-scatterer limit, Q1 = 1 is from the appar-
ent ‘shadow’ of the scatterer and another Q2 = 1 is from diffrac-
tion. (So that Q = Q1 +Q2)
Then, we move on to the quasi-2D perovskite analysis. As can be
seen in figure 3.2, the grain size of quasi-2D perovskite remains
far smaller than the incidence and emission wavelength.
Therefore, the Rayleigh scattering regime (d ≪ λ ) should be ap-
plied to analyze the scattering effect of the film. In the regime,

I = I0 f (θ)Λd6
(

2π

λ

)4
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Fig. 3.2. Scanning electron microscopy image of a typical quasi-2D
perovskite film

Because the transmitting-type UV-Vis spectrophotometer encom-
passes the scattering effect as ‘absorption’, (because it calculates
the absorbance by A = 1−T ; R = 0) the apparent absorbance con-
tributed by the scattering could be written by the following:

Asc = log
(

I0

I

)
= Γsc logλ

(3.6)

Not only the scattering effect but also Fresnel loss contributes to
the apparent absorbance. Considering the configuration of the
spectrophotometer, only normal incidence may be considered. There-
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Fig. 3.3. Baseline correction in absorption spectra

fore,

AFresnel = RFresnel

=

∣∣∣∣Yair −YPeLED, eff

Yair +YPeLED, eff

∣∣∣∣2
=

∣∣∣∣1− (nPeLED, eff + iκPeLED, eff)

1+(nPeLED, eff + iκPeLED, eff)

∣∣∣∣2
(3.7)

In equation 3.7, one should note that Yj is the optical admittance
of the jth layer, and consequently potentially be a wavelength-
dependent complex number. But for the sake of succinctness, we
set the optical admittances to be constant. Considering equation
3.6 and 3.7, one can simply express the general baseline by:

Abase = Γsc logλ +ΓFresnel (3.8)
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Practically, this can be obtained by fitting the ‘clearly non-emitting’
region to equation 3.8. In green-emitting quasi-2D perovskite thin
film for example, it is apparent that the photoluminescence would
not contribute to the signal in the region where wavelength over
550nm. Consequently, as shown in figure 3.3, in which the blue
line indicates the baseline,

3.4. Oscillator strength

As discussed earlier, an oscillation of an electric field is the result
of dipole oscillation. Consider an electron density cloud displaced
by x by an external electric field. Then, the equation of motion of
the electron is described by

m0
d2

dt2 x =−kx+ eE(t)−2m0γ
d
dt

x (3.9)

where γ is the damping constant of the system and the restoration
force constant k = m0ω2

0 . Given the sinusoidal external field of
E(t) = E(ω)exp(−iωt), one can simply postulate an ansatz for x
to be x(t) = x(ω)exp(−iωt). (Recall the rudimentary differential
equation courses) Then, the equation yields

x(ω) =− e
m0

1
ω2 +2iγω −ω2

0
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Then, the susceptibility of the system would be given by

χ(ω) =
P(ω)

E(ω)

= ne
x(ω)

E(ω)

=− ne2

2m0

√
ω2

0 − γ2

 1

ω −
√

ω2
0 − γ2 + iγ

− 1

ω −
√

ω2
0 + γ2 + iγ


(3.10)

This bulk susceptibility could be also derived from the Schrodinger
equation with the Coulombic potential-based Hamiltonian. There-
fore, we define oscillator strength fn by

χ(ω) =−n
h̄ ∑

j
e2 ∣∣xi j

∣∣2( 1
ω +Ei j/h̄+ iγ

− 1
ω −Ei j/h̄+ iγ

)
=

ne2

2m0
∑

j

(
fi j

Ei j

(
1

ω −Ei j + iγ
− 1

ω +Ei j + iγ

))
where fi j = 2m0

∣∣xi j
∣∣2 Ei j

and xi j = ⟨i| x̂ | j⟩
and Ei j = Ei −E j

(3.11)

Then,
∑
k

fh j = 2m0 ∑
k
⟨k| x̂ | j⟩⟨ j| x̂ |k⟩(Ek −E j) (3.12)
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and from the original Schrodinger equation, H |k⟩= Ek |k⟩,

⟨ j| x̂ |k⟩(Ek −E j) = ⟨ j| x̂Ek |k⟩−⟨ j| x̂E j |k⟩
= ⟨ j| x̂H |k⟩−⟨k| x̂E∗

j | j⟩
∗

= ⟨ j| x̂H |k⟩−⟨k| x̂H ∗ | j⟩∗

= ⟨ j| x̂H |k⟩−⟨ j|H x̂ |k⟩
= ⟨ j| [x̂, H ] |k⟩

Therefore, equation 3.12 would be

∑
k

fh j = 2m0 ⟨ j| x̂ [H , x̂] | j⟩

= m0 ⟨ j| [x̂, [H , x̂]] | j⟩

= m0

(
1

m0
⟨ j| j⟩

)
= 1

(3.13)

Equation 3.13 is called the oscillator strength sum rule. It implies
that the overall oscillator strength can be written as a linear sum
of contributions from subsystems. Fundamentally, in tandem with
the Maxwell equations, it constitutes the linearity of optoelectronic
systems.

3.5. Elliott theory

A typical crystalline semiconductor material has two origins of its
absorption: (1) continuum and (2) exciton. The Elliott theory de-
scribes how light with a given energy would be absorbed by the
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material. Albeit this section would stick to the direct bandgap ma-
terials, it can be further expanded to indirect and forbidden transi-
tions.
For electron-hole recombination in direct bandgap materials, the
total momentum of the system should be 0 because ke =−kh. Con-
sequently, the transition rate for an exciton of the nth excited state
is given by:

Aex ∝ |⟨0| σ̂ |n⟩|2 Sn(E) (3.14)

where ⟨0| σ̂ |n⟩ is the optical overlap between the recombination
state (zero-state) and excited state and Sn(E) is related to the den-
sity of states. Similarly, the continuum absorption transition rate
can be expressed by simply expanding equation 3.14.

Ac ∝

∫
|⟨0| σ̂ |n⟩|2 S(E)dE (3.15)

Combining equation 3.14 and 3.15, the total absorbance is given
by:

α(E) = µ
2
√

Eb

(
αc +∑

n
αex, n

)
where αc =

∫
∞

Eg

H

(
h̄ω −E

Γ

)
·

1+b(E −Eg)

1− exp
(
−2π

√
Eb

E−Eg

)dE

αex, n =
2Eb

n3 P

(
h̄ω −Eex, n

Γ

)
(3.16)

where the absolute energy is defined to be 0 at the valence band
maximum and g

( h̄ω−E
Γ

)
is the density of states considering the

42



spectral linewidth Γ. (A more detailed explanation of Γ is provided
in section 4.2)
Note that, in equation 3.16, the Heaviside step function and exci-
tonic peak function are respectively given by

H(x) =

{
0 (x < 0)
1 (x ≥ 0)

P(x) =

{
δ (x) (ideal)

1√
2π

exp
(
− x

2

)2
(real)

Moreover, the term b(E −Eg) is a correction term for the super-
quadratic behavior of the conduction and valence bands near the
CBM and VBM and therefore becomes negligible when it comes
to halide perovskites. (Recall, from section 3.4, that spin-orbit
coupling in a typical crystalline semiconductor material is irrele-
vant to the parabolicity of the bands.)
The Elliott theory is frequently used to estimate the exciton bind-
ing energy Eb(T ) as a function of temperature. In that case, temperature-
dependent absorption spectra are acquired. However, the theory is
a versatile tool in analyzing multi-component (ensemble) systems
such as quasi-2D perovskite film, especially in performing decon-
volution as shown in figure 3.4.
The appearance of the excitonic absorption peak tends to be vivid
with narrower spectral linewidth Γ and larger exciton binding en-
ergy Eb. Consequently, more confined phases show more lucid
peak behavior. In the case of quasi-2D perovskite film, in which a
plethora of reduced-dimension perovskite phases are mixed, the
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Fig. 3.4. Deconvolution of absorption spectra with the Elliott theory

Elliott theory can be used to quantitatively estimate how much
amount of each phase would be in the film.
You should be extremely vigilant in assessing if a perovskite thin
film is quasi-2D. Apparently, you can simply stipulate a sample
quasi-2D perovskite if it exhibits excitonic peaks at the charac-
teristic positions anticipated by the confined potential model. (see
section 2.2) However, in the case of a ‘smooth’ absorption curve, it
could be perilous to simply predicate whether it is quasi-2D or not.
There are a plethora of possible reasons for ill-defined excitonic
absorption peaks. Therefore, it could be concluded that quasi-
2D only if there is sufficient evidence from other temporal optical
modalities such as transient absorption spectroscopy (TAS). For
example, if you have a ‘smooth’ absorption curve while the TAS
spectrum shows rather broad spectral linewidth for the phase, in-
distinct excitonic peaks may be justified. However, in the oppo-
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Fig. 3.5. Absorption spectra of quasi-2D perovskites

site case, you have to sentence against the sample asserting itself
quasi-2D.
Here, note that not every ‘peak’ on an absorption spectrum may
have attributed to an excitonic absorption. It might have origi-
nated from the wavelength-dependent Fresnel loss or an optical
resonator effect. (Recall sections 3.1.2 and 3.1.3)
Last but not least, note that equation 3.16 is based on Bloch wave-
functions albeit equations 3.14 and 3.15 are from Fermi’s golden
rule. (see section 2.3 Therefore, it is only valid for crystalline
structures including quantum dots and polycrystalline materials.
Note that in the case of magic-sized clusters with distinct struc-
tures (e.g. InP magic-sized cluster), the Elliott theory may not be
applied.
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3.6. Ideal absorption spectra of a highly emissive quasi-2D
perovskite film

Then, what would be the ideal absorption spectrum of an energy-
funneled system? For efficient energy funneling, the optical spec-
tral overlap between two adjacent phases should be maximized.
Recalling section 2.3 and 3.5, it becomes apparent that having
large spectral linewidth is the crucial factor in yielding a highly
efficient energy funneling process. In the case of quasi-2D per-
ovskites, for example, the linewidth of the low-n phases should
be sufficiently large, and in that case, as already discussed in sec-
tion 3.5, excitonic absorption peak may not be visible. In other
words, the film may have a somewhat ‘smooth’ absorption curve
in a short-wavelength regime.
However, the final emitting phase should have narrow spectral
linewidth. This is acceptable because, in a large n regime, the en-
ergy gap between the two adjacent n phases would be fairly small.
Therefore, the most desirable absorption spectrum would be some-
thing similar to the blue line in figure 3.5.
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CHAPTER 4
Photoluminescence spectra analysis

Following absorption, photoluminescence is another important char-
acteristic in analyzing optoelectronic materials. For example, the
quantum yield itself is a dictating factor of the external quantum
efficiency of a light-emitting diode. As such, it renders the overall
performance of your devices. In this chapter, a quasi-classical de-
scription of light emission and its related properties are described.
To this end, it would provide you with how the optical properties,
including color purity and luminescence efficiency of your materi-
als, could be modulated.
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Fig. 4.1. Dipole radiation pattern

4.1. Dipole emission

Consider the harmonically oscillating dipole p= p0 sin(ωt). Then,
the radiation fields are given by

E⃗ =
sin(θ)
4πεrc2

d2 p
dt2 θ̂

B⃗ =
µ sin(θ)

4πrc
d2 p
dt2 φ̂

Therefore, the time-averaged angular distribution of the Poynting
vector is given by

⟨S(θ , φ)⟩=
µw2I2

0 d2

32π2c

(
sin2

θ

r2

)
r̂ (4.1)

Equation 4.1 has a doughnut shape. One can easily deduce the to-
tal radiation pattern by simply conjugating the dipole distribution
pattern with the dipole radiation pattern (equation 4.1). For exam-
ple, an ideal 2D plate would generate a dumbbell-shaped radiation
pattern. (See figure 4.2)
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Fig. 4.2. Emission pattern of a 2D nanoplatelet

However, in the case of real quasi-2D materials, a little tolerance of
transition dipole in z-direction is allowed. In other words, the tran-
sition dipole distribution would no longer remain in the x−y plane
but would have a somewhat ‘plate with thickness’ form. In that
case, because of the z-component of the convoluted function, the
dumbbell would be shrunk in the z-direction while being broad-
ened in the radial direction. As such, 0D quantum dots and 1D
nanorods would have isotropic (yet not spherical) and doughnut-
shaped radiation patterns, respectively.

4.2. Temperature-dependent emission profile

The emission linewidth of a material is governed by phonon inter-
action. For the majority of inorganic materials and perovskites, the
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spectral linewidth is given by

Γ(T ) = Γ0 +ΓacT +
ΓLO

exp
(ELO

kT

)
−1

+Γimp exp
(
−Eb

kT

)
(4.2)

where Γ0 is the inhomogeneous broadening factor and Γac term
describes the homogeneous broadening by acoustic phonon scat-
tering. The Γac is the acoustic phonon-exciton coupling strength.
Moreover, ΓLO is the coupling strength of the interaction between
a longitudinal optical phonon and an exciton. It is also a part of
the homogeneous broadening. Last but not least, the final term de-
scribes the linewidth broadening by impurities. It follows a typical
Arrhenius-type dissociation pattern. Even though equation 4.2 has
some limitations including the temperature-independent phonon
energy assumption, which is not true in typical reduced-dimension
materials.
The apparent rotational degree of freedom of an ion in a crys-
talline material may broaden the spectral linewidth of the mate-
rial. Therefore, cesium-based perovskite tends to have a narrower
FWHM compared to methylammonium or formamidinium-based
crystals, because a cesium ion in the A-site has a spherical sym-
metry. Likewise, formamidinium-doped methylammonium-based
perovskites have a narrower spectral linewidth compared to those
with pure methylammonium. Methylammonium in typical halide
perovskites exhibits dipolar relaxation behavior, the rotational re-
laxation of the methylammonium ion within the A-site after the ex-
ternal field removal, and the addition of formamidinium impedes
the relaxation by increasing the corresponding activation energy.
(see figure 4.3) Therefore, it would be imperative to mix formami-
dinium if you opt for methylammonium as a constituent of the
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Fig. 4.3. Dipolar relaxation of A-site cation in MA1−xFAxPbBr3

A-site cations of halide perovskites.
One should remember that not every phase should have narrow Γ

in energy-funneled systems. In that case, it is the phase with the
smallest bandgap that dictates the total emission characteristics.
For example, broad emission profiles of the small-n phases may
be beneficial, or even imperative, to yield highly emissive quasi-
2D films. (See section 3.6) Rather, it is important to maintain a
narrow linewidth of the terminal light-emitting phases.
The spectral linewidth may be broadened by the distortion of the
perovskite lattice. Along with the growing deviation from the ro-
bust and rigid lattice, it becomes more susceptible to the phonon
interaction. Accordingly, it tends to have a broader emission linewidth.
For example, in the case of ⟨110⟩-truncated 2D phases, well known
to have large deviance from the well-defined rectangular lattice,
exhibits very broad emission bandwidth because of both large exciton-
phonon interaction as well as self-trapped exciton behavior (see
section 4.3), and is often used for white light-emitting applications
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accordingly. Its lattice susceptibility is attributed to additional hy-
drogen bonding between the spacer molecules and the lead halide
polyhedron.
Similarly, one cannot achieve a narrow emission profile with a chi-
ral nanomaterial. The chirality of a nanomaterial has two origins.
Firstly, chiral organic additives give the ‘composite’ chirality. It is
the simplest way to fabricate ‘chiral nanomaterials’ but its proper-
ties other than optical characteristics do not deviate from the orig-
inal materials. Contrastingly, chirality could be transferred from
the organic ligand to the crystal by distorting the lattice. In this
case, the circular dichroism pattern would be different from that of
the chiral ligand. (i.e. new peaks appear or the intensities of some
peaks are undermined) It is lucidly highlighted in many fields be-
cause it has distinctive and special properties compared to achiral
materials. However, from the optical viewpoint, it cannot gen-
erate spectrally narrow light because of its distorted (and hence
metastable) lattice geometry. As such, it is physically impossible
to achieve narrow spectral linewidth and saliently efficacious chi-
rality transfer simultaneously.
It is the Huang-Rhys factor S that dominates the bandgap of the
material. Given the average phonon energy ⟨Eph⟩, temperature-
dependent bandgap energy is articulated by

Eg(T ) = Eg(T = 0)+S⟨Eph⟩
(

coth
(
⟨Eph⟩
2kT

)
−1
)

(4.3)

Similarly, emission spectral linewidth is stipulated by the Huang-
Rhys factor following the bandgap as

FWHM = 2.36
√

S⟨Eph⟩

√
coth

(
⟨Eph⟩
2kT

)
(4.4)
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You can find the Huang-Rhys factor S of the materials in many
related articles.
As shown in equation 4.2, 4.3, and 4.4, both bandgap and linewidth
of material tend to increase as a function of temperature unless any
significant phase transition occurs.

4.3. Self-trapped exciton

The discussions heretofore have assumed that the lattice is robust
and is not affected by the localization of a charge carrier. However,
in reality, the localization of an exciton may change the free energy
landscape of the lattice geometry. For example, in a typical 2D
perovskite, localization of exciton distorts the lattice geometry and
stabilizes the exciton energy than its original state dictated by the
‘fixed lattice’ assumption. Such a new recombination channel is
called the self-trapped exciton. (see the corresponding Jablonski
diagram in figure 4.4)
The competition between the normal exciton and self-trapped ex-
citon is governed by the thermal activation process and hence Ar-
rhenius formalism. Self-trapped exciton inevitably broadens emis-
sion linewidth in a bathochromic way because it adds more stable
recombination channels. Moreover, it tends to have a very large
Stokes shift compared to typical 3D perovskites. In other words,
the Huang-Rhys factor of the system (see equation 4.4) has a posi-
tive correlation with the self-trapped exciton emission. Therefore,
in the field of white light emission, it is the foremost and impera-
tive requirement to have an efficient self-trapped exciton channel.
(i.e. higher S) However, the overly large S may lead to efficient
phonon emission and ultimately increase the non-radiative recom-
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Fig. 4.4. Self-trapped exciton

bination rate. As such, maintaining a fair level of the Huang-Rhys
factor is crucial in achieving both fair quantum yield and broad-
band emission.
In the field of perovskite, reduced-dimension perovskites are known
to have a salient degree of self-trapped exciton generation owing
to their structural susceptibility and distortion. Quantitatively, the
deviation of the bond length and bond angle from the equilibrium
of the rigid crystal defines the structural susceptibility. The two
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factors are defined by

∆d =
1
n

n

∑
j=1

(d j −d0)
2

d0

σ
2 =

1
11

12

∑
j=1

(θ j −90)2

(4.5)

It is to endow an appropriate S to the system why prominent ex-
amples opt to adopt alkylammoniums which secure at least the
minimal degree of rigidity of the crystals.
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CHAPTER 5
Electrical Analysis

Heretofore, you have dealt with optical methods to scrutinize the
material. In this chapter, you will encounter how electrical param-
eters can be versatile modalities in analyzing not only materials but
also the whole device. Starting with the diode equation, this chap-
ter covers the J −V curve characteristics and is finalized with the
recombination zone. Throughout the chapter, a steady-state flow
of charge carriers is assumed. To this end, provided a fundamental
basis in electrodynamics, this chapter provides you with the last
snippet of optoelectronic analysis of light-emitting materials and
devices.
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5.1. Diode equation

The Shockley diode equation states that

J = J0

[
exp
(

eV
ηkT

)
−1
]

(5.1)

For layered structure, one can define voltage Vi and current density
Ji for each layer respectively.

Vtot = ∑Vi

∀i, Jtot = Ji

Then, each layer would possess respective ideality factor ηi such
that

Jtot = J0

[
exp
(

eVtot

ηtotkT

)
−1
]

= J0

[
exp
(

eVi

ηikT

)
−1
]
(∀i)

Therefore,

ηtot =
∑Vi

Vj
η j (5.2)

One should note that the ideality factor of a device can be extracted
by

η =

(
kT
e

∂

∂V
lnJ
)−1

(5.3)

Typically, η(V ) shows a U-shaped curve. The ideality factor of a
system is dictated by min(η(V )). For example, the ideality factor
of the system shown in figure 5.1 is ∼ 2.5.
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Fig. 5.1. Ideality factor η =
(

kT
e

∂

∂V lnJ
)−1

calculation

5.2. Charge injection

A light-emitting diode is essentially an electroluminescent device.
Thus, the exciton generation mechanism is radically different from
photoluminescence and depends on the charge injection. Envis-
age an imbalanced injection of electrons and holes. It may lead
to not only inefficient exciton generation but also efficient Auger
processes and hence ultimately delimits the efficiency (rigorously,
external quantum efficiency) of a light-emitting diode. Pragmati-
cally, the balance of charge carrier injection is an important factor
dictating the efficiency. The following parts cover how charge car-
riers are injected in steady-state and how electrical information can
be exploited to produce imperative information on not only emis-
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sion later but also interfaces.

5.2.1 Charge injection mechanism

Consider charge-carrier injection through the layer of interest. In-
jection of charge from another layer could be modeled with typical
tunneling because the field would lower the energy of the terminal
side of carrier injection (injection layer-layer of interest interface)
and the potential barrier gets thinner as a stronger field is applied
accordingly.
There are two major models to describe the field-induced carrier
injection through a layer. The Fowler-Nordheim tunneling ne-
glects the image charge potential by the external field while the
Richardson-Schottky thermionic emission takes that into account.
In the case of light-emitting diodes, in which electrons and holes
are steadily and concomitantly injected into the emission layer, the
image charge effect would be pragmatically neglected and hence
the Fowler-Nordheim tunneling model is used to estimate the charge
injection.
Under the field, the potential of the injecting layer would be de-
scribed by

V (x) = φB − eFx

where F is the uniform field throughout the layer and φB is the
zero-field energy barrier. (see figure 5.2) Then, for the barrier
width x0 ≡ φB

eF and effective mass of the carrier m∗, the tunneling
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Fig. 5.2. Fowler-Nordheim tunneling
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probability is given by

t = exp
(
−2

h̄

∫ x0

0

√
2m∗V (x)dx

)
= exp

(
− 4

3eh̄F

√
2m∗φ

3/2
B

)
Thus, the Fowler-Nordheim tunneling current is given by

JFN = A∗ e2F2

φBα2k2 exp

(
−2αφ

3/2
B

3eF

)

where α ≡ 2
√

2m∗

h̄

with the Richardson constant A∗ =
em∗k
2π2h̄3

(5.4)

Therefore, thickening a charge injection layer would greatly re-
duce the current by the carrier.

5.2.2 Charge carrier injection barrier: band offset effect

It is the discrete multilayer scheme that renders the electrical be-
haviors of light-emitting diodes intriguing. The energy level off-
set often plays a critical role in the electrical behavior of a device
because it ultimately dictates the steady-state charge injection dy-
namics.
At first, the larger the total band offset, the more retarded turn-on
of the diode would be observed. Therefore, the construction of a
smooth energy-level landscape throughout the device is imperative
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Fig. 5.3. Energy levels of materials in PeLEDs
(Adv. Electron. Mater. 2023, 9, 2201271)

to realize low-turnon voltage devices. Band extrema energies of
typical materials are listed in figure 5.3.
Secondly, asymmetric band offsets for electrons and holes may re-
sult in an imbalanced carrier injection. (Recall equation 5.4) In
that case, you will see a non-abrupt increase in current density in
a J −V plot. For example, as shown in figure 5.4, imbalanced
energy level offset exhibits the ‘bump’ at the pre-turn-on regime.
(Now, see figure 5.1. Is the J −V curve exemplary?) Such asym-
metry could be resolved by introducing an aligned dipole at the
interface, self-assembled monolayers, for example, thereby form-
ing local permanent polarization.
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Fig. 5.4. Energy level offset and J−V curve

5.2.3 Space-charge-limited current

Poole-Frenkel-like dependence

The Gauss’ Law, in differential form, states that ∇ · D⃗ = ρ(x) =
en(x), where D⃗, ρ(x), e, and n(x) are electric flux density, charge
density, electric charge, and carrier number density, respectively.
Hence, it can be written in 1D as follows:

dD⃗
dx

= ε
dE⃗
dx

= en(x) (5.5)

The classical model of electric conduction also states that J⃗ =
n(x)eµ(E⃗)E⃗, where J⃗, µ , and E⃗ are current density, carrier mobil-
ity, and electric field, respectively. Combining the equation above
with equation 5.5, it can be easily obtained that
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dE⃗
dx

=
J⃗

εµ(E⃗)E⃗

Hence, when assuming 1D for succinctness, thereby considering
all the vectors as scalars, the following is obtained.

dx =
1
J

εµ(E)EdE (5.6)

Here, we set the field dependence of mobility to be

µ(E) = µ0 exp(γ
√
|E|) (5.7)

Combination followed by integration of equation 5.6 and 5.7 give

d =
∫ d

0
dx

=
∫ E(d)

E(0)

εµ0 exp(γ
√
|E|)E

J
dE

=
εµ0

J

∫ E(d)

0
exp(γ

√
E)EdE

(5.8)

To write it succinctly, one can define a variable η = γ2E and a
constant ηd = γ2E(d), so that dE = 1

γ2 dη . In such case, equation
(5.8) would be

d =
εµ0

Jγ4

∫
ηd

0
exp(

√
|η |)ηdη

By defining normalized current density j = J/J0, where J0 =
εµ0
dγ4 ,

an important equation on the normalized current density can be
obtained as
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j =
∫

ηd

0
exp(

√
|η |)ηdη

As for voltage, one should integrate the field spatially. So the volt-
age can be written by

V =
∫ d

0
E(x)dx (5.9)

By inserting equation 5.6 and 5.7 into equation 5.9, the following
is obtained.

V =
εµ0

J

∫ E(d)

0
exp(γ

√
|E|)E2dE (5.10)

Akin to the current density case, we can define a constant V0 =
d/γ2. Then, equation 5.10 can be written as following:

V =
εµ0

dγ4
d
γ2

1
J

∫
ηd

0
exp(

√
|η |)η2dη

=
1
j
V0

∫
ηd

0
exp(

√
|η |)η2dη

(5.11)

Defining the normalized voltage v =V/V0 yields:

v =
1
j

∫
ηd

0
exp(

√
|η |)η2dη

The dependence coincides with the expected results from the Poole-
Frenkel mechanism. However, in the case of organic and per-
ovskite light-emitting diodes, where energetic disorder arises ow-
ing to randomly oriented and located dipole moment, it also fol-
lows the dependence yet the exact mechanism deviates from the
Poole-Frenkel mechanism.
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Mott-Gurney Law

The famous Mott-Gurney law postulates that mobility is not a
function of the field E. (µ(E) = µ0) In that case, equation 5.8
would be modified as

d =
∫ d

0
dx

=
∫ E(d)

E(0)

εµ0E
J

dE

=
εµ0

2J
(Ed)

2

Therefore, Ed =
√

2Jd
εµ0

. Likewise, equation 5.11 would be modi-
fied as follows:

V =
∫ d

0
E(x)dx

=
∫ E(d)

E(0)

εµ0E2

J
dE

=
εµ0

3J
(Ed)

3

Merging the two equations above yields

J =
9
8

εµ0
V 2

d3
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From γ2 = d/V0 by the definition of V0, one can write

J0 =
εµ0

dγ4

=
εµ0

d

(
V0

d

)2

= εµ0
V 2

0
d3

Hence, the normalized current density j = J/J0 for the case of
field-independent mobility, from the aforementioned definition of
the normalized voltage v = V/V0, the following equation is ob-
tained.

jM−G =
9
8

v2

5.3. Recombination zone

According to the Langevin theory, the electron-hole recombina-
tion rate γeh is given by the geometry of your device. Consider an
emission layer with the thickness of d and emission zone width of
w with the charge carrier travel distances of de and dh for electron
and hole, respectively. Along the spatial coordinate, the charge
carrier densities are given by ne(x) and nh(x) likewise. As to the
Langevin theory, the recombination rate is given by

γeh ≃
1

1+ w
d
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Fig. 5.5. Geometry of recombination zone and emission layer

The total ‘measured’ current is apparently comprised of the contri-
bution of electrons and holes and by the definition of the current,

J = je + jh
= eE (µene(x)+µhnh(x))

Then considering the electron-hole recombination rate γeh,

d
dx

je = eµh
d
dx

ne(x)

=−eγehne(x)nh(x)
d
dx

jh = eµh
d
dx

nh(x)

=−eγehne(x)nh(x)

(5.12)
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You should be able to envisage that the solution of equation 5.12
would be an exponential decay curve by intuition. (If you are not,
you may have to rush into the library) For the solution given by

ne(x) = ne, 0 exp
(
−d − x

de

)
nh(x) = nh, 0 exp

(
− x

dh

)
the recombination zone width in the space-charge-limited current
regime is

w = de +dh −d

=
2µeµh

(µe +µh)2 d
(5.13)

Moreover, the center position of the recombination zone is given
by

xr =
(

d +
w
2

)(
µh

µe +µh

)
(5.14)

It is imperative to make xr → d
2 to avoid any potential undermin-

ing of the radiative emission efficiency due to effective Auger re-
combination. (note that, for example, if xr ≤ d ≤ dh, the hole ac-
cumulation zone and the recombination zone would be severely
overlapped.)
One may alter the recombination zone position xr by changing the
relative thickness of charge transport layers. Obviously, the recom-
bination zone would be spatially biased toward the hole injection
layer if the layer becomes thicker.
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Fig. 5.6. Halide segregation in X-alloyed perovskites

5.4. Halide segregation in perovskites

In mixed halide perovskite, halide ions are segregated by external
stimuli such as light illumination and electric field application. In
tandem with the quantum confined Stark effect, (see section 2.2.1)
the halide migration may induce typical redshift with increasing
voltage applied to your device, as shown in figure 5.6.
For example, in Br-Cl alloyed perovskites, an excited state within
the Cl-rich regime could be effectively transferred to its counter-
part. However, you should be meticulous because not all halide
segregation induces a redshift of the luminescence of the film. If
the halide segregation within the region cannot be effectively ‘re-
solved’ by the excitonic wavefunction, it would emit as if it has
not undergone any halide segregation. The redshift in emission
appears only if the halide segregation spans in a spatially resolv-

70



able order. Therefore, in a typical quasi-2D film, intra-phase has
virtually no effect on its emission peak wavelength and only inter-
phase halide segregation militates the excitonic emission profile.
In the case of quantum dots with a salient level of quantum con-
finement, likewise, halide segregation within the crystal may not
affect the color. Consequently, light-emitting diodes with a quan-
tum dot monolayer do not show significant redshift with respect
to strengthening electric field (applied voltage). Despite excellent
spectral stability upon electroluminescence operation, the advan-
tage however would be compensated by low external quantum ef-
ficiency because of the inevitable overlap between the charge ac-
cumulation zone and recombination zone. (see section 5.3)
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Optoelectronics study is an assorted gift set. Spanning a plethora
of disciplines, including quantum mechanics, optics, and electro-
dynamics, just to name a few, one in the field should be acquainted
with the subjects. HANDBOOK OF OPTOELECTRONIC ANALYSIS

OF LIGHT-EMITTING MATERIALS AND DEVICES provides read-
ers with a rudimentary toolkit required for engaging with studies
utilizing light-matter interactions.

The electronic version of this book is also available at
https://mj3259.github.io
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